
Top Reasons�

5 Reasons Why SAST + DAST�
with Fortify Makes Sense�
The combination of static (SAST) and dynamic (DAST) application security testing�
methodologies provides a more comprehensive view of an application’s risk�
posture. Here are 5 reasons why SAST + DAST with Fortify makes sense.�

1. A uni�ed taxonomy across testing
methods enables a complete view
of vulnerabilities.

2. Consistent remediation guidance
enables collaboration and remediation

3. Powerful prioritization reduces
the noise

4. Layered defense provides a safeguard

5. Uni�ed vulnerability management
creates feedback loops

The combination of static (SAST) and dynamic (DAST) application security testing methodologies
provides a more comprehensive view of an application’s risk posture. Static analysis tools give
thorough feedback early in the SDLC, while dynamic analysis tools can give security teams a
quick win by immediately discovering exploitable vulnerabilities in either production or pre-
production environments. Testing in both ways yields the most complete view of the risk posed
by weaknesses and vulnerabilities within the application.

1.�A uni�ed taxonomy across testing methods enables a complete view of vulnerabilities.
The Fortify Software Security Research (SSR) by OpenText™ group is a team of experts
in the application security industry. This team writes the rules which drive our static,
dynamic, and runtime products. When researching new vulnerabilities, the team works
together to identify the best and most e�cient modality for detection. By leveraging
a uni�ed taxonomy across all three testing methods, Fortify can detect a weakness in
source code with Fortify Static Code Analyzer (SCA) by OpenText™, then identify that
same �nding using dynamic analysis with Fortify WebInspect by OpenText™ in running
environments where the weakness becomes a real vulnerability. Where static and
dynamic can both detect a vulnerability, a rule is provided for each technology while
maintaining a focus on accuracy and speed.

Customer Value
Static and Dynamic application security testing are complementary technologies in
their ability to identify vulnerabilities across the entire SDLC, from development, to QA,
to production. When these two technologies are uni�ed across a common taxonomy,
they augment one another to deliver a comprehensive solution. Customers see a more
complete view of the vulnerabilities that threaten their organizations.

Real-World Example
Consider a basic weak SSL cipher vulnerability. While static and dynamic testing can
both detect this weakness, the �nding is heavily tied to the application’s implementation
in production. Static testing modalities will commonly return limited results for instances
where SSL is con�gured from within the application. However, dynamic testing will
provide a view of the web server con�guration for instances where SSL is terminated
outside of the application. By employing tools that leverage a shared taxonomy,
Fortify is able to provide an extremely accurate analysis of the vulnerability’s real
security risk.

5 Reasons Why SAST + DAST with Fortify Makes Sense

2

2.�Consistent remediation guidance enables collaboration and remediation. By leveraging a uni�ed taxonomy across both static and dynamic
testing methods, developers are presented with results that share recommendation advice and security mappings.

Customer Value
By using software that uses developer-friendly language, developers won’t need to spend as much time training to understand the reports.
This allows them to spend less time researching vulnerabilities and more time remediating them.

Real-World Example
With DevOps methodologies becoming more and more prevalent, application security is becoming a team sport. Development, operations,
and security teams require that the tools leveraged at various stages of the SDLC provide consistent vulnerability detail. By leveraging Fortify
static and dynamic testing technologies, underpinned by a common vulnerability taxonomy, teams can collaborate on vulnerabilities in a clear
and concise manner.

3.�Powerful prioritization reduces the noise. All vulnerabilities are not created equal. A weakness which is identi�ed via source code analysis
may be mitigated outside of code, leading to a lower net risk score. By layering dynamic analysis on top of static analysis, customers gain a
valuable additional risk metric which allows them to see a more complete real-world risk picture.

Customer Value
It is not realistic to remediate all �ndings. Modern application security professionals are faced with di�cult decisions when deciding which
issues to �x, and which to defer. By leveraging a uni�ed taxonomy across both static and dynamic testing, customers can gain an additional
metric that allows them to choose which �ndings should be remediated �rst. Overall security posture is enhanced, and developers are able
to use their time more e�ciently by focusing on the most important �ndings �rst.

Real-World Example
Modern application security programs use a wide range of technologies and practices to mitigate risk. While static analysis does a great job
of identifying a deep and broad set of vulnerability categories, it cannot account for production application context. An organization protecting
XSS via a WAF may rightfully place a higher priority on remediating a non-WAF-protected vulnerability, like unsafe deserialization.

4.�Layered defense provides a safeguard. Static analysis provides excellent coverage, but it cannot be run against production environments
where con�gurations and deployment options may have an enormous impact on the applications overall risk posture. Dynamic analysis allows

5.�Uni�ed vulnerability management creates feedback loops. Security and Development
teams need to consider a wide range of factors when identifying and remediating risk.

好色先生TV

Accessibility Report

		Filename:

		opentext-tr-5-reasons-why-sast-plus-dast-with-fortify-makes-sense-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 3

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

				Passed		Accessibility permission flag must be set

				Passed		Document is not image-only PDF

				Passed		Document is tagged PDF

				Needs manual check		Document structure provides a logical reading order

				Passed		Text language is specified

				Passed		Document title is showing in title bar

				Passed		Bookmarks are present in large documents

				Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

				Passed		All page content is tagged

				Passed		All annotations are tagged

				Passed		Tab order is consistent with structure order

				Passed		Reliable character encoding is provided

				Passed		All multimedia objects are tagged

				Passed		Page will not cause screen flicker

				Passed		No inaccessible scripts

				Passed		Page does not require timed responses

				Needs manual check		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

				Passed		All form fields are tagged

				Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

				Passed		Figures require alternate text

				Passed		Alternate text that will never be read

				Passed		Alternate text must be associated with some content

				Passed		Alternate text should not hide annotation

				Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

				Passed		TR must be a child of Table, THead, TBody, or TFoot

				Passed		TH and TD must be children of TR

				Passed		Tables should have headers

				Passed		Tables must contain the same number of columns in each row and rows in each column

				Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

				Passed		LI must be a child of L

				Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

				Passed		Appropriate nesting

Back to Top

